LIHTC helps create affordable housing by allowing state and local agencies the authority to issue tax credits to those who acquire and rehabilitate or construct rental housing for low-income househoulds. It is intended as an incentive to locate projects in low-income areas.
You can download the full national dataset for LIHTC from https://lihtc.huduser.gov/ in the form of a spreadsheet. A Data Dictionary explains each variable. The data has a row for each project ID and you can filter based on a variety of location variables and the year placed in service (Yr_PIS) or the allocation year (Yr_Alloc)
# Load relevant libraries
library( maptools )
library( sp )
library( dplyr )
library( pander )
library( rgdal )
library(geojsonio)
# Read in raw data with csv file
LIHTC.dat <- read.csv("https://raw.githubusercontent.com/lecy/SyracuseLandBank/master/DATA/RAW_DATA/LIHTC_raw.csv", header=TRUE)
# Select only the rows for Syracuse, NY
LIHTC.syr <- subset (LIHTC.dat, Proj_St == "NY" & Proj_Cty == "SYRACUSE")
# Select only the rows for years 2005-2015
LIHTC.syr.years <- subset (LIHTC.syr, Yr_Alloc >= 2005 & Yr_Alloc < 2016)
LIHTC.syr.years.filtered<- select(LIHTC.syr.years, FIPS2010, Yr_Alloc, Project)
LIHTC.ct.group<- group_by(LIHTC.syr.years.filtered, FIPS2010)
LIHTC.ct.group.counted <-count(LIHTC.ct.group, FIPS2010, Yr_Alloc)
LIHTC.data<-as.data.frame(LIHTC.ct.group.counted)
colnames(LIHTC.data) <- c("TRACT","YEAR","LIHTC")
LIHTC.ctdat<- LIHTC.data[complete.cases(LIHTC.data),]
LIHTC.ctdat
# Count up tax credits by year
LIHTC.yrct<-count(LIHTC.ctdat, vars = YEAR)
LIHTC.bp<-as.data.frame(LIHTC.yrct)
LIHTC.bp<-LIHTC.bp[order(LIHTC.bp$vars),]
# Create a bar plot by year
barplot<-barplot(LIHTC.bp$n, names.arg=LIHTC.bp$vars, main="Low-Income Housing Tax Credits in Syracuse", col= "lightgreen", border="white", ylim=c(0, 4), las=1, axes=F)
text(x = barplot, y = 0,labels = LIHTC.bp$n, pos = 3, cex = 1.2, font = 2, col = "white")
# Read in census tract geojson file from Github
syr.ct <- geojson_read("https://raw.githubusercontent.com/lecy/SyracuseLandBank/master/SHAPEFILES/SYRCensusTracts.geojson", method="local", what="sp" )
# Select latitude and longitude from LIHTC data
LIHTC.lat.long <- LIHTC.syr.years[,c("Longitude", "Latitude")]
LIHTC.lat.long.full <- LIHTC.lat.long[complete.cases(LIHTC.lat.long),]
lat.long.sp<-SpatialPoints(LIHTC.lat.long.full , proj4string=CRS("+proj=longlat +datum=WGS84"))
# Plot points on Syracuse map
plot(syr.ct, border="gray80", main="Low-Income Housing Tax Credits in Syracuse")
points(lat.long.sp, col="lightgreen", pch=19, cex=1)
# Generate a .CSV file
setwd( "../../DATA/AGGREGATED_DATA" )
write.csv( LIHTC.ctdat, "LIHTC_aggregated.csv", row.names=F )