library( foreign )
library( memisc )
library( knitr )
library( dplyr )
library( xtable )
library( stargazer )
library( broom)
library( pander )
<- readRDS( "./Data/CompleteHazardSpells.rds" )
dat
# lapply( dat, class )
# head( dat, 25 ) %>% pander
# num of times each org occurs in dataset
table( table( dat$ein)) %>% pander()
1 | 2 | 3 | 4 | 5 | 6 |
---|---|---|---|---|---|
1535 | 2384 | 1450 | 1010 | 857 | 508 |
table( dat$fisyr ) %>% pander
1998 | 1999 | 2000 | 2001 | 2002 | 2003 |
---|---|---|---|---|---|
2986 | 4489 | 4176 | 3910 | 3342 | 3123 |
table( dat$fisyr, dat$prof ) %>% pander
0 | 1 | |
---|---|---|
1998 | 2986 | 0 |
1999 | 3873 | 616 |
2000 | 3494 | 682 |
2001 | 3411 | 499 |
2002 | 2990 | 352 |
2003 | 2815 | 308 |
round( prop.table( table( dat$fisyr, dat$prof ), margin=1 ), 3 ) %>% pander
0 | 1 | |
---|---|---|
1998 | 1 | 0 |
1999 | 0.863 | 0.137 |
2000 | 0.837 | 0.163 |
2001 | 0.872 | 0.128 |
2002 | 0.895 | 0.105 |
2003 | 0.901 | 0.099 |
# results='asis'
# "max" maximum
# "mean" mean
# "median" median
# "min" minimum
# "n" number of observations
# "p25" 25th percentile
# "p75" 75th percentile
# "sd" standard deviation
<- dat[ , c("prof","Accrual","GovtMoneyRat","UNAgrand","FixedCostRat",
dd "SurplusRat_ndrop_w892","EqRat_w_K","ProfFundFeeYes",
"FS_Totrev_adj","HHI") ]
stargazer( dd, digits=4,
type = "html", out="./Results/DescriptiveStatistics.doc",
title="Descriptive Statistics",
summary.stat = c( "min", "median", "mean", "max", "sd" ) )
Statistic | Min | Median | Mean | Max | St. Dev. |
prof | 0 | 0 | 0.1115 | 1 | 0.3148 |
Accrual | 0 | 0 | 0.2162 | 1 | 0.4116 |
GovtMoneyRat | 0.0000 | 0.0000 | 0.0421 | 1.0000 | 0.1699 |
UNAgrand | -4,631 | 0 | 18.3223 | 21,027 | 199.7073 |
FixedCostRat | 0 | 0 | 0.0356 | 1 | 0.1126 |
SurplusRat_ndrop_w892 | -6.7684 | -0.2498 | -2.1275 | 0.3798 | 2.9796 |
EqRat_w_K | 0.0000 | 4.1733 | 29.6149 | 2,605.1730 | 91.1213 |
ProfFundFeeYes | 0 | 0 | 0.0253 | 1 | 0.1570 |
FS_Totrev_adj | 0.0000 | 34,730.8800 | 58,447.4900 | 45,324,067.0000 | 392,621.0000 |
HHI | 0.0000 | 0.8477 | 0.6760 | 1.0000 | 0.3774 |