\[Months \: of \: Cash \: on \: Hand = \frac{Cash \: or \: Cash \: Equivalent}{[(Operating \: Expenses - Noncash \: Expenses) / 12]} \]
MOnths of cash on hand is the number of months that an organization can continue to pay its operating expenses, given the amount of cash available.
This metric is good to review at startup of organization, during periods of low revenues, and prior to undertaking new major activity.
The metric is limited though in the following ways. First, it is based on an average monthly cash outflow, which is not really the case. Instead, cash tends to be spent in a lumpy manner, such as when rent or payroll are paid. Also, management tends to take drastic action to reduce expenses as cash reserves decline, so that the actual months of operation tend to be longer than indicated by this ratio. Thus, it is better to use a detailed cash flow analysis to determine the precise duration of the available cash, with regular updates.
Note: This data is available only for organizations that file full 990s. [Organizations with revenues <$200,000 and total assets <$500,000 have the option to not file a full 990 and file an EZ instead.]
Numerator: (Cash + short-term investments + current
receivables)
* On 990: (Part X, line 1B) + (Part X, line 2B) +
(Part X, line 3B) + (Part X, line 4B) - SOI PC EXTRACTS: nonintcashend,
svngstempinvend, pldgegrntrcvblend, accntsrcvblend
* On EZ:Part I,
line 22 [cash and short-term investments only] - SOI PC EXTRACTS: Not
available
Denominator: ((Operating expenses – bad
debts – depreciation) / 12) * On 990: Part IX, line 25A – Part IX, line
22A -SOI PC EXTRACTS: accntspayableend+grntspayableend * On EZ: Part I,
line 17 [operating expenses only]
Note: The original ratio yields years of cash on hand. We divide the denominator by 12, or multiply the ratio by 12, to get months of cash on hand. o The 990 doesn’t record bad debts (the amount listed as uncollectible for receivable accounts); it just asks organizations to report grants/pledges/accounts receivable net of bad debts, so this term is missing from the denominator
# TEMPORARY VARIABLES
<- ( core$nonintcashend + core$svngstempinvend + core$pldgegrntrcvblend + core$accntsrcvblend)
operating_cash <- ( core$accntspayableend + core$grntspayableend )/12
payables
# can't divide by zero
== 0 ] <- NA
payables[ payables
# SAVE RESULTS
$months_coh <- operating_cash / payables
core
# summary( core$months_coh )
Check high and low values to see what makes sense.
.05 <- quantile( core$months_coh, 0.05, na.rm=T )
x.95 <- quantile( core$months_coh, 0.95, na.rm=T )
x
ggplot( core, aes(x = months_coh ) ) +
geom_density( alpha = 0.5) +
xlim( x.05, x.95 )
<- core
core2
# proportion of values that are negative
mean( core2$months_coh < 0, na.rm=T )
## [1] 0.003170577
$months_coh[ core2$months_coh < 0 ] <- 0
core2
# proption of values above 200%
mean( core2$months_coh > 50, na.rm=T )
## [1] 0.5774678
$months_coh[ core2$months_coh > 50 ] <- 50 core2
Tax data is available for full 990 filers, so this metric does not describe any organizations with Gross receipts < $200,000 and Total assets < $500,000. Some organizations with receipts or assets below those thresholds may have filed a full 990, but these would be exceptions.
Any cited works here…
Convert all monetary variables to thousands of dollars.
%>%
core2 mutate( # months_coh = months_coh * 10000,
totrevenue = totrevenue / 1000,
totfuncexpns = totfuncexpns / 1000,
lndbldgsequipend = lndbldgsequipend / 1000,
totassetsend = totassetsend / 1000,
totliabend = totliabend / 1000,
totnetassetend = totnetassetend / 1000 ) %>%
select( STATE, NTEE1, NTMAJ12,
months_coh,
AGE,
totrevenue, totfuncexpns,
lndbldgsequipend, totassetsend, %>%
totnetassetend, totliabend )
stargazer( type = s.type,
digits=0,
summary.stat = c("min","p25","median",
"mean","p75","max", "sd"),
covariate.labels = c("Months of COH", "Age",
"Revenue ($1k)", "Expenses($1k)",
"Buildings ($1k)", "Total Assets ($1k)",
"Net Assets ($1k)", "Liabiliies ($1k)"))
Statistic | Min | Pctl(25) | Median | Mean | Pctl(75) | Max | St. Dev. |
Months of COH | 0 | 25 | 50 | 38 | 50 | 50 | 16 |
Age | 3 | 22 | 30 | 32 | 41 | 95 | 15 |
Revenue (1k) | -5,377 | 259 | 909 | 4,522 | 3,672 | 408,932 | 14,286 |
Expenses(1k) | 0 | 263 | 840 | 4,192 | 3,328 | 382,667 | 13,466 |
Buildings (1k) | -4 | 79 | 824 | 3,504 | 2,868 | 513,509 | 13,210 |
Total Assets (1k) | -7,552 | 778 | 2,446 | 9,262 | 7,477 | 672,021 | 27,039 |
Net Assets (1k) | -178,870 | 156 | 1,094 | 4,553 | 4,079 | 531,068 | 15,470 |
Liabiliies (1k) | -2,707 | 115 | 816 | 4,709 | 3,133 | 705,623 | 18,722 |
What proportion of orgs have Months of Cash equal to zero (no operating cash)?
<- mean( core2$months_coh == 0, na.rm=T ) prop.zero
In the sample, 1 percent of the organizations have zero months of cash on hand, meaning they could not survive without receivables and program service revenue. These organizations are dropped from subsequent graphs to keep the visualizations clean. The interpretation of the graphics should be the distributions of Months of Cash on Hand for organizations that have some cash on hand.
###
### ADD QUANTILES
###
### function create_quantiles() defined in r-functions.R
$exp.q <- create_quantiles( var=core2$totfuncexpns, n.groups=5 )
core2$rev.q <- create_quantiles( var=core2$totrevenue, n.groups=5 )
core2$asset.q <- create_quantiles( var=core2$totnetassetend, n.groups=5 )
core2$age.q <- create_quantiles( var=core2$AGE, n.groups=5 )
core2$land.q <- create_quantiles( var=core2$lndbldgsequipend, n.groups=5 ) core2
<- min( core2$months_coh, na.rm=T )
min.x <- max( core2$months_coh, na.rm=T )
max.x
ggplot( core2, aes(x = months_coh )) +
geom_density( alpha = 0.5 ) +
xlim( min.x, max.x ) +
xlab( variable.label ) +
theme( axis.title.y=element_blank(),
axis.text.y=element_blank(),
axis.ticks.y=element_blank() )
<- core2 %>% filter( ! is.na(NTEE1) )
core3 table( core3$NTEE1) %>% sort(decreasing=TRUE) %>% kable()
Var1 | Freq |
---|---|
Housing | 2837 |
Community Development | 1585 |
Human Services | 1102 |
<- table( factor(core3$NTEE1) )
t <- data.frame( x=Inf, y=Inf,
df N=paste0( "N=", as.character(t) ),
NTEE1=names(t) )
ggplot( core3, aes( x=months_coh ) ) +
geom_density( alpha = 0.5) +
# xlim( -0.1, 1 ) +
labs( title="Nonprofit Subsectors" ) +
xlab( variable.label ) +
facet_wrap( ~ NTEE1, nrow=1 ) +
theme_minimal( base_size = 15 ) +
theme( axis.title.y=element_blank(),
axis.text.y=element_blank(),
axis.ticks.y=element_blank(),
strip.text = element_text( face="bold") ) + # size=20
geom_text( data=df,
aes(x, y, label=N ),
hjust=2, vjust=3,
color="gray60", size=6 )
table( core2$Region) %>% kable()
Var1 | Freq |
---|---|
Midwest | 1444 |
Northeast | 1368 |
South | 1610 |
West | 1088 |
<- table( factor(core2$Region) )
t <- data.frame( x=Inf, y=Inf,
df N=paste0( "N=", as.character(t) ),
Region=names(t) )
%>%
core2 filter( ! is.na(Region) ) %>%
ggplot( aes(months_coh) ) +
geom_density( alpha = 0.5 ) +
xlab( "Census Regions" ) +
ylab( variable.label ) +
facet_wrap( ~ Region, nrow=3 ) +
theme_minimal( base_size = 22 ) +
theme( axis.title.y=element_blank(),
axis.text.y=element_blank(),
axis.ticks.y=element_blank() ) +
geom_text( data=df,
aes(x, y, label=N ),
hjust=2, vjust=3,
color="gray60", size=6 )
table( core2$Division ) %>% kable()
Var1 | Freq |
---|---|
East North Central | 1038 |
East South Central | 289 |
Middle Atlantic | 904 |
Mountain | 303 |
New England | 464 |
Pacific | 785 |
South Atlantic | 900 |
West North Central | 406 |
West South Central | 421 |
<- table( factor(core2$Division) )
t <- data.frame( x=Inf, y=Inf,
df N=paste0( "N=", as.character(t) ),
Division=names(t) )
%>%
core2 filter( ! is.na(Division) ) %>%
ggplot( aes(months_coh) ) +
geom_density( alpha = 0.5 ) +
xlab( "Census Sub-Regions (10)" ) +
ylab( variable.label ) +
facet_wrap( ~ Division, nrow=3 ) +
theme_minimal( base_size = 22 ) +
theme( axis.title.y=element_blank(),
axis.text.y=element_blank(),
axis.ticks.y=element_blank() ) +
geom_text( data=df,
aes(x, y, label=N ),
hjust=2, vjust=3,
color="gray60", size=6 )
ggplot( core2, aes(x = totfuncexpns )) +
geom_density( alpha = 0.5 ) +
xlim( quantile(core2$totfuncexpns, c(0.02,0.98), na.rm=T ) )
$totfuncexpns[ core2$totfuncexpns < 1 ] <- 1
core2# core2$totfuncexpns[ is.na(core2$totfuncexpns) ] <- 1
if( nrow(core2) > 10000 )
{<- sample_n( core2, 10000 )
core3 else
}
{<- core2
core3
}
jplot( log10(core3$totfuncexpns), core3$months_coh,
xlab="Nonprofit Size (logged Expenses)",
ylab=variable.label,
xaxt="n", xlim=c(3,10) )
axis( side=1,
at=c(3,4,5,6,7,8,9,10),
labels=c("1k","10k","100k","1m","10m","100m","1b","10b") )
%>%
core2 filter( ! is.na(exp.q) ) %>%
ggplot( aes(months_coh) ) +
geom_density( alpha = 0.5) +
labs( title="Nonprofit Size (logged expenses)" ) +
xlab( variable.label ) +
facet_wrap( ~ exp.q, nrow=3 ) +
theme_minimal( base_size = 22 ) +
theme( axis.title.y=element_blank(),
axis.text.y=element_blank(),
axis.ticks.y=element_blank() )
ggplot( core2, aes(x = totrevenue )) +
geom_density( alpha = 0.5 ) +
xlim( quantile(core2$totrevenue, c(0.02,0.98), na.rm=T ) ) +
theme( axis.title.y=element_blank(),
axis.text.y=element_blank(),
axis.ticks.y=element_blank() )
$totrevenue[ core2$totrevenue < 1 ] <- 1
core2
if( nrow(core2) > 10000 )
{<- sample_n( core2, 10000 )
core3 else
}
{<- core2
core3
}
jplot( log10(core3$totrevenue), core3$months_coh,
xlab="Nonprofit Size (logged Revenue)",
ylab=variable.label,
xaxt="n", xlim=c(3,10) )
axis( side=1,
at=c(3,4,5,6,7,8,9,10),
labels=c("1k","10k","100k","1m","10m","100m","1b","10b") )
%>%
core2 filter( ! is.na(rev.q) ) %>%
ggplot( aes(months_coh) ) +
geom_density( alpha = 0.5 ) +
labs( title="Nonprofit Size (logged revenues)" ) +
xlab( variable.label ) +
facet_wrap( ~ rev.q, nrow=3 ) +
theme_minimal( base_size = 22 ) +
theme( axis.title.y=element_blank(),
axis.text.y=element_blank(),
axis.ticks.y=element_blank() )
ggplot( core2, aes(x = totnetassetend )) +
geom_density( alpha = 0.5) +
xlim( quantile(core2$totnetassetend, c(0.02,0.98), na.rm=T ) ) +
xlab( "Net Assets" ) +
theme( axis.title.y=element_blank(),
axis.text.y=element_blank(),
axis.ticks.y=element_blank() )
$totnetassetend[ core2$totnetassetend < 1 ] <- NA
core2
if( nrow(core2) > 10000 )
{<- sample_n( core2, 10000 )
core3 else
}
{<- core2
core3
}
jplot( log10(core3$totnetassetend), core3$months_coh,
xlab="Nonprofit Size (logged Net Assets)",
ylab=variable.label,
xaxt="n", xlim=c(3,10) )
axis( side=1,
at=c(3,4,5,6,7,8,9,10),
labels=c("1k","10k","100k","1m","10m","100m","1b","10b") )
$totnetassetend[ core2$totnetassetend < 1 ] <- NA
core2$asset.q <- create_quantiles( var=core2$totnetassetend, n.groups=5 )
core2
%>%
core2 filter( ! is.na(asset.q) ) %>%
ggplot( aes(months_coh) ) +
geom_density( alpha = 0.5 ) +
labs( title="Nonprofit Size (logged net assets, if assets > 0)" ) +
xlab( variable.label ) +
ylab( "" ) +
facet_wrap( ~ asset.q, nrow=3 ) +
theme_minimal( base_size = 22 ) +
theme( axis.title.y=element_blank(),
axis.text.y=element_blank(),
axis.ticks.y=element_blank() )
Total Assets for Comparison
$totassetsend[ core2$totassetsend < 1 ] <- NA
core2$tot.asset.q <- create_quantiles( var=core2$totassetsend, n.groups=5 )
core2
if( nrow(core2) > 10000 )
{<- sample_n( core2, 10000 )
core3 else
}
{<- core2
core3
}
jplot( log10(core3$totassetsend), core3$months_coh,
xlab="Nonprofit Size (logged Total Assets)",
ylab=variable.label,
xaxt="n", xlim=c(3,10) )
axis( side=1,
at=c(3,4,5,6,7,8,9,10),
labels=c("1k","10k","100k","1m","10m","100m","1b","10b") )
ggplot( core2, aes(x = totassetsend )) +
geom_density( alpha = 0.5) +
xlim( quantile(core2$totassetsend, c(0.02,0.98), na.rm=T ) ) +
xlab( "Net Assets" ) +
theme( axis.title.y=element_blank(),
axis.text.y=element_blank(),
axis.ticks.y=element_blank() )
%>%
core2 filter( ! is.na(tot.asset.q) ) %>%
ggplot( aes(months_coh) ) +
geom_density( alpha = 0.5 ) +
xlab( "Nonprofit Size (logged total assets, if assets > 0)" ) +
ylab( variable.label ) +
facet_wrap( ~ tot.asset.q, nrow=3 ) +
theme_minimal( base_size = 22 ) +
theme( axis.title.y=element_blank(),
axis.text.y=element_blank(),
axis.ticks.y=element_blank() )
ggplot( core2, aes(x = AGE )) +
geom_density( alpha = 0.5 )
$AGE[ core2$AGE < 1 ] <- NA
core2
if( nrow(core2) > 10000 )
{<- sample_n( core2, 10000 )
core3 else
}
{<- core2
core3
}
jplot( core3$AGE, core3$months_coh,
xlab="Nonprofit Age",
ylab=variable.label )
%>%
core2 filter( ! is.na(age.q) ) %>%
ggplot( aes(months_coh) ) +
geom_density( alpha = 0.5 ) +
labs( title="Nonprofit Age" ) +
xlab( variable.label ) +
ylab( "" ) +
facet_wrap( ~ age.q, nrow=3 ) +
theme_minimal( base_size = 22 ) +
theme( axis.title.y=element_blank(),
axis.text.y=element_blank(),
axis.ticks.y=element_blank() )
ggplot( core2, aes(x = lndbldgsequipend )) +
geom_density( alpha = 0.5 )
$lndbldgsequipend[ core2$lndbldgsequipend < 1 ] <- NA
core2if( nrow(core2) > 10000 )
{<- sample_n( core2, 10000 )
core3 else
}
{<- core2
core3
jplot( log10(core3$lndbldgsequipend), core3$months_coh,
xlab="Land and Building Value (logged)",
ylab=variable.label,
xaxt="n", xlim=c(3,10) )
axis( side=1,
at=c(3,4,5,6,7,8,9,10),
labels=c("1k","10k","100k","1m","10m","100m","1b","10b") )
}
%>%
core2 filter( ! is.na(land.q) ) %>%
ggplot( aes(months_coh) ) +
geom_density( alpha = 0.5 ) +
labs( title="Land and Building Value" ) +
xlab( variable.label ) +
ylab( "" ) +
facet_wrap( ~ land.q, nrow=3 ) +
theme_minimal( base_size = 22 ) +
theme( axis.title.y=element_blank(),
axis.text.y=element_blank(),
axis.ticks.y=element_blank() )
<- select( core, ein, tax_pd, months_coh )
core.months_coh saveRDS( core.months_coh, "03-data-ratios/m-06-months-cash.rds" )
write.csv( core.months_coh, "03-data-ratios/m-06-months-cash.csv" )