Metric Construction

Definition & Interpretation

\[Months \: of \: Cash \: on \: Hand = \frac{Cash \: or \: Cash \: Equivalent}{[(Operating \: Expenses - Noncash \: Expenses) / 12]} \]

MOnths of cash on hand is the number of months that an organization can continue to pay its operating expenses, given the amount of cash available.

This metric is good to review at startup of organization, during periods of low revenues, and prior to undertaking new major activity.

The metric is limited though in the following ways. First, it is based on an average monthly cash outflow, which is not really the case. Instead, cash tends to be spent in a lumpy manner, such as when rent or payroll are paid. Also, management tends to take drastic action to reduce expenses as cash reserves decline, so that the actual months of operation tend to be longer than indicated by this ratio. Thus, it is better to use a detailed cash flow analysis to determine the precise duration of the available cash, with regular updates.

Variables

Note: This data is available only for organizations that file full 990s. [Organizations with revenues <$200,000 and total assets <$500,000 have the option to not file a full 990 and file an EZ instead.]

Numerator: (Cash + short-term investments + current receivables)
* On 990: (Part X, line 1B) + (Part X, line 2B) + (Part X, line 3B) + (Part X, line 4B) - SOI PC EXTRACTS: nonintcashend, svngstempinvend, pldgegrntrcvblend, accntsrcvblend
* On EZ:Part I, line 22 [cash and short-term investments only] - SOI PC EXTRACTS: Not available
Denominator: ((Operating expenses – bad debts – depreciation) / 12) * On 990: Part IX, line 25A – Part IX, line 22A -SOI PC EXTRACTS: accntspayableend+grntspayableend * On EZ: Part I, line 17 [operating expenses only]

Note: The original ratio yields years of cash on hand. We divide the denominator by 12, or multiply the ratio by 12, to get months of cash on hand. o The 990 doesn’t record bad debts (the amount listed as uncollectible for receivable accounts); it just asks organizations to report grants/pledges/accounts receivable net of bad debts, so this term is missing from the denominator



# TEMPORARY VARIABLES 
operating_cash  <- ( core$nonintcashend + core$svngstempinvend + core$pldgegrntrcvblend + core$accntsrcvblend)
payables <- ( core$accntspayableend + core$grntspayableend )/12

# can't divide by zero
payables[ payables == 0 ] <- NA

# SAVE RESULTS 
core$months_coh <-  operating_cash / payables
                     
# summary( core$months_coh )

Standardize Scales

Check high and low values to see what makes sense.

x.05 <- quantile( core$months_coh, 0.05, na.rm=T )
x.95 <- quantile( core$months_coh, 0.95, na.rm=T )

ggplot( core, aes(x = months_coh ) ) +  
  geom_density( alpha = 0.5) + 
  xlim( x.05, x.95 ) 

core2 <- core

# proportion of values that are negative
mean( core2$months_coh < 0, na.rm=T ) 
## [1] 0.003170577
core2$months_coh[ core2$months_coh < 0 ] <- 0

# proption of values above 200% 
mean( core2$months_coh > 50, na.rm=T ) 
## [1] 0.5774678
core2$months_coh[ core2$months_coh > 50 ] <- 50

Metric Scope

Tax data is available for full 990 filers, so this metric does not describe any organizations with Gross receipts < $200,000 and Total assets < $500,000. Some organizations with receipts or assets below those thresholds may have filed a full 990, but these would be exceptions.

Reference

Any cited works here…

Descriptive Statistics

Convert all monetary variables to thousands of dollars.


core2 %>%
  mutate( # months_coh = months_coh * 10000,
    totrevenue = totrevenue / 1000,
    totfuncexpns = totfuncexpns / 1000, 
    lndbldgsequipend = lndbldgsequipend / 1000,
    totassetsend = totassetsend / 1000,
    totliabend = totliabend / 1000,
    totnetassetend = totnetassetend / 1000 ) %>% 
  select( STATE,  NTEE1, NTMAJ12, 
          months_coh, 
          AGE, 
          totrevenue, totfuncexpns, 
          lndbldgsequipend, totassetsend, 
          totnetassetend, totliabend ) %>%

  stargazer( type = s.type, 
             digits=0, 
             summary.stat = c("min","p25","median",
                              "mean","p75","max", "sd"),
             covariate.labels = c("Months of COH", "Age", 
                                  "Revenue ($1k)", "Expenses($1k)", 
                                  "Buildings ($1k)", "Total Assets ($1k)",
                                  "Net Assets ($1k)", "Liabiliies ($1k)"))
Statistic Min Pctl(25) Median Mean Pctl(75) Max St. Dev.
Months of COH 0 25 50 38 50 50 16
Age 3 22 30 32 41 95 15
Revenue (1k) -5,377 259 909 4,522 3,672 408,932 14,286
Expenses(1k) 0 263 840 4,192 3,328 382,667 13,466
Buildings (1k) -4 79 824 3,504 2,868 513,509 13,210
Total Assets (1k) -7,552 778 2,446 9,262 7,477 672,021 27,039
Net Assets (1k) -178,870 156 1,094 4,553 4,079 531,068 15,470
Liabiliies (1k) -2,707 115 816 4,709 3,133 705,623 18,722

What proportion of orgs have Months of Cash equal to zero (no operating cash)?

prop.zero <- mean( core2$months_coh == 0, na.rm=T )

In the sample, 1 percent of the organizations have zero months of cash on hand, meaning they could not survive without receivables and program service revenue. These organizations are dropped from subsequent graphs to keep the visualizations clean. The interpretation of the graphics should be the distributions of Months of Cash on Hand for organizations that have some cash on hand.

###
### ADD QUANTILES
###
###   function create_quantiles() defined in r-functions.R

core2$exp.q   <- create_quantiles( var=core2$totfuncexpns,   n.groups=5 )
core2$rev.q   <- create_quantiles( var=core2$totrevenue,     n.groups=5 )
core2$asset.q <- create_quantiles( var=core2$totnetassetend, n.groups=5 )
core2$age.q   <- create_quantiles( var=core2$AGE,            n.groups=5 )
core2$land.q   <- create_quantiles( var=core2$lndbldgsequipend,    n.groups=5 )

Months of Cash on Hand Density

min.x <- min( core2$months_coh, na.rm=T )
max.x <- max( core2$months_coh, na.rm=T )

ggplot( core2, aes(x = months_coh )) +  
  geom_density( alpha = 0.5 ) + 
  xlim( min.x, max.x  ) +
  xlab( variable.label ) +
  theme( axis.title.y=element_blank(),
         axis.text.y=element_blank(), 
         axis.ticks.y=element_blank() )

Months of Cash on Hand by NTEE Major Code

core3 <- core2 %>% filter( ! is.na(NTEE1) )
table( core3$NTEE1) %>% sort(decreasing=TRUE) %>% kable()
Var1 Freq
Housing 2837
Community Development 1585
Human Services 1102

t <- table( factor(core3$NTEE1) ) 
df <- data.frame( x=Inf, y=Inf, 
                  N=paste0( "N=", as.character(t) ), 
                  NTEE1=names(t) )

ggplot( core3, aes( x=months_coh ) ) + 
  geom_density( alpha = 0.5) + 
  # xlim( -0.1, 1 ) +
  labs( title="Nonprofit Subsectors" ) + 
  xlab( variable.label ) + 
  facet_wrap( ~ NTEE1, nrow=1 ) + 
    theme_minimal( base_size = 15 )  + 
    theme( axis.title.y=element_blank(),
           axis.text.y=element_blank(), 
           axis.ticks.y=element_blank(),
           strip.text = element_text( face="bold") ) +  # size=20 
  geom_text( data=df, 
             aes(x, y, label=N ), 
             hjust=2, vjust=3, 
             color="gray60", size=6 )

Months of Cash on Hand by Region

table( core2$Region) %>% kable()
Var1 Freq
Midwest 1444
Northeast 1368
South 1610
West 1088
t <- table( factor(core2$Region) ) 
df <- data.frame( x=Inf, y=Inf, 
                  N=paste0( "N=", as.character(t) ), 
                  Region=names(t) )

core2 %>% 
  filter( ! is.na(Region) ) %>% 
  ggplot( aes(months_coh) )  + 
    geom_density( alpha = 0.5 ) + 
    xlab( "Census Regions" ) + 
    ylab( variable.label ) +
    facet_wrap( ~ Region, nrow=3 ) + 
    theme_minimal( base_size = 22 )  + 
    theme( axis.title.y=element_blank(),
           axis.text.y=element_blank(), 
           axis.ticks.y=element_blank() ) + 
    geom_text( data=df, 
             aes(x, y, label=N ), 
             hjust=2, vjust=3, 
             color="gray60", size=6 )

table( core2$Division ) %>% kable()
Var1 Freq
East North Central 1038
East South Central 289
Middle Atlantic 904
Mountain 303
New England 464
Pacific 785
South Atlantic 900
West North Central 406
West South Central 421
t <- table( factor(core2$Division) ) 
df <- data.frame( x=Inf, y=Inf, 
                  N=paste0( "N=", as.character(t) ), 
                  Division=names(t) )

core2 %>% 
  filter( ! is.na(Division) ) %>% 
  ggplot( aes(months_coh) )  + 
    geom_density( alpha = 0.5 ) + 
    xlab( "Census Sub-Regions (10)" ) + 
    ylab( variable.label ) +
    facet_wrap( ~ Division, nrow=3 ) + 
    theme_minimal( base_size = 22 )  + 
    theme( axis.title.y=element_blank(),
           axis.text.y=element_blank(), 
           axis.ticks.y=element_blank() ) + 
    geom_text( data=df, 
             aes(x, y, label=N ), 
             hjust=2, vjust=3, 
             color="gray60", size=6 ) 

Months of Cash on Hand by Nonprofit Size (Expenses)

ggplot( core2, aes(x = totfuncexpns )) +  
  geom_density( alpha = 0.5 ) + 
  xlim( quantile(core2$totfuncexpns, c(0.02,0.98), na.rm=T ) )

core2$totfuncexpns[ core2$totfuncexpns < 1 ] <- 1
# core2$totfuncexpns[ is.na(core2$totfuncexpns) ] <- 1

if( nrow(core2) > 10000 )
{
  core3 <- sample_n( core2, 10000 )
} else
{
  core3 <- core2
}

jplot( log10(core3$totfuncexpns), core3$months_coh, 
       xlab="Nonprofit Size (logged Expenses)", 
       ylab=variable.label,
       xaxt="n", xlim=c(3,10) )
axis( side=1, 
      at=c(3,4,5,6,7,8,9,10), 
      labels=c("1k","10k","100k","1m","10m","100m","1b","10b") )

core2 %>% 
  filter( ! is.na(exp.q) ) %>% 
  ggplot( aes(months_coh) )  + 
    geom_density( alpha = 0.5) + 
    labs( title="Nonprofit Size (logged expenses)" ) + 
    xlab( variable.label ) +
    facet_wrap( ~ exp.q, nrow=3 ) + 
    theme_minimal( base_size = 22 )  + 
    theme( axis.title.y=element_blank(),
           axis.text.y=element_blank(), 
           axis.ticks.y=element_blank() )

Months of Cash on Hand by Nonprofit Size (Revenue)

ggplot( core2, aes(x = totrevenue )) +  
  geom_density( alpha = 0.5 ) + 
  xlim( quantile(core2$totrevenue, c(0.02,0.98), na.rm=T ) ) + 
  theme( axis.title.y=element_blank(),
           axis.text.y=element_blank(), 
           axis.ticks.y=element_blank() )

core2$totrevenue[ core2$totrevenue < 1 ] <- 1

if( nrow(core2) > 10000 )
{
  core3 <- sample_n( core2, 10000 )
} else
{
  core3 <- core2
}

jplot( log10(core3$totrevenue), core3$months_coh, 
       xlab="Nonprofit Size (logged Revenue)", 
       ylab=variable.label,
       xaxt="n", xlim=c(3,10) )
axis( side=1, 
      at=c(3,4,5,6,7,8,9,10), 
      labels=c("1k","10k","100k","1m","10m","100m","1b","10b") )

core2 %>% 
  filter( ! is.na(rev.q) ) %>% 
  ggplot( aes(months_coh) )  + 
    geom_density( alpha = 0.5 ) + 
    labs( title="Nonprofit Size (logged revenues)" ) + 
    xlab( variable.label ) +
    facet_wrap( ~ rev.q, nrow=3 ) + 
    theme_minimal( base_size = 22 )  + 
    theme( axis.title.y=element_blank(),
           axis.text.y=element_blank(), 
           axis.ticks.y=element_blank() )

Months of Cash on Hand by Nonprofit Size (Net Assets)

ggplot( core2, aes(x = totnetassetend )) +  
  geom_density( alpha = 0.5) + 
  xlim( quantile(core2$totnetassetend, c(0.02,0.98), na.rm=T ) ) + 
  xlab( "Net Assets" ) +
    theme( axis.title.y=element_blank(),
           axis.text.y=element_blank(), 
           axis.ticks.y=element_blank() )

core2$totnetassetend[ core2$totnetassetend < 1 ] <- NA

if( nrow(core2) > 10000 )
{
  core3 <- sample_n( core2, 10000 )
} else
{
  core3 <- core2
}

jplot( log10(core3$totnetassetend), core3$months_coh, 
       xlab="Nonprofit Size (logged Net Assets)", 
       ylab=variable.label,
       xaxt="n", xlim=c(3,10) )
axis( side=1, 
      at=c(3,4,5,6,7,8,9,10), 
      labels=c("1k","10k","100k","1m","10m","100m","1b","10b") )

core2$totnetassetend[ core2$totnetassetend < 1 ] <- NA
core2$asset.q <- create_quantiles( var=core2$totnetassetend, n.groups=5 )

core2 %>% 
  filter( ! is.na(asset.q) ) %>% 
  ggplot( aes(months_coh) )  + 
    geom_density( alpha = 0.5 ) + 
    labs( title="Nonprofit Size (logged net assets, if assets > 0)" ) + 
    xlab( variable.label ) + 
    ylab( "" ) + 
    facet_wrap( ~ asset.q, nrow=3 ) + 
    theme_minimal( base_size = 22 )  + 
    theme( axis.title.y=element_blank(),
           axis.text.y=element_blank(), 
           axis.ticks.y=element_blank() )

Total Assets for Comparison

core2$totassetsend[ core2$totassetsend < 1 ] <- NA
core2$tot.asset.q <- create_quantiles( var=core2$totassetsend, n.groups=5 )

if( nrow(core2) > 10000 )
{
  core3 <- sample_n( core2, 10000 )
} else
{
  core3 <- core2
}

jplot( log10(core3$totassetsend), core3$months_coh, 
       xlab="Nonprofit Size (logged Total Assets)", 
       ylab=variable.label,
       xaxt="n", xlim=c(3,10) )
axis( side=1, 
      at=c(3,4,5,6,7,8,9,10), 
      labels=c("1k","10k","100k","1m","10m","100m","1b","10b") )

ggplot( core2, aes(x = totassetsend )) +  
  geom_density( alpha = 0.5) + 
  xlim( quantile(core2$totassetsend, c(0.02,0.98), na.rm=T ) ) + 
  xlab( "Net Assets" ) +
    theme( axis.title.y=element_blank(),
           axis.text.y=element_blank(), 
           axis.ticks.y=element_blank() )

core2 %>% 
  filter( ! is.na(tot.asset.q) ) %>% 
  ggplot( aes(months_coh) )  + 
    geom_density( alpha = 0.5 ) + 
    xlab( "Nonprofit Size (logged total assets, if assets > 0)" ) + 
    ylab( variable.label ) +
    facet_wrap( ~ tot.asset.q, nrow=3 ) + 
    theme_minimal( base_size = 22 )  + 
    theme( axis.title.y=element_blank(),
           axis.text.y=element_blank(), 
           axis.ticks.y=element_blank() )

Months of Cash on Hand by Nonprofit Age

ggplot( core2, aes(x = AGE )) +  
  geom_density( alpha = 0.5 )  

core2$AGE[ core2$AGE < 1 ] <- NA

if( nrow(core2) > 10000 )
{
  core3 <- sample_n( core2, 10000 )
} else
{
  core3 <- core2
}

jplot( core3$AGE, core3$months_coh, 
       xlab="Nonprofit Age", 
       ylab=variable.label ) 

core2 %>% 
  filter( ! is.na(age.q) ) %>% 
  ggplot( aes(months_coh) )  + 
    geom_density( alpha = 0.5 ) + 
    labs( title="Nonprofit Age" ) + 
    xlab( variable.label ) +
    ylab( "" ) +
    facet_wrap( ~ age.q, nrow=3 ) + 
    theme_minimal( base_size = 22 )  + 
    theme( axis.title.y=element_blank(),
           axis.text.y=element_blank(), 
           axis.ticks.y=element_blank() )

Months of Cash on Hand by Land and Building Value

ggplot( core2, aes(x = lndbldgsequipend )) +  
  geom_density( alpha = 0.5 )  

core2$lndbldgsequipend[ core2$lndbldgsequipend < 1 ] <- NA
if( nrow(core2) > 10000 )
{
  core3 <- sample_n( core2, 10000 )
} else
{
  core3 <- core2


jplot( log10(core3$lndbldgsequipend), core3$months_coh, 
       xlab="Land and Building Value (logged)", 
       ylab=variable.label,
       xaxt="n", xlim=c(3,10) )
axis( side=1, 
      at=c(3,4,5,6,7,8,9,10), 
      labels=c("1k","10k","100k","1m","10m","100m","1b","10b") )
}

core2 %>% 
  filter( ! is.na(land.q) ) %>% 
  ggplot( aes(months_coh) )  + 
    geom_density( alpha = 0.5 ) + 
    labs( title="Land and Building Value" ) + 
    xlab( variable.label ) +
    ylab( "" ) +
    facet_wrap( ~ land.q, nrow=3 ) + 
    theme_minimal( base_size = 22 )  + 
    theme( axis.title.y=element_blank(),
           axis.text.y=element_blank(), 
           axis.ticks.y=element_blank() )

Save Metrics

core.months_coh <- select( core, ein, tax_pd, months_coh )
saveRDS( core.months_coh, "03-data-ratios/m-06-months-cash.rds" )
write.csv( core.months_coh, "03-data-ratios/m-06-months-cash.csv" )