\[Post\text-Depreciation \: Profitability \: Margin = \frac{Totale \: Revenue- Total \: Expenses}{Total \: Revenue} \]
Post-depreciation profit is an income measure used to determine profit after incorporating non-cash expenses on a balance sheet. Post-depreciation profit is calculated because it provides a picture of an organization’s true available profits net of depreciation expenses. Non-expense items lower an organization’s reported earnings, so a post-depreciation profit would show a lower profit in comparison to profits calculated prior to depreciation expenses.
High values in this metric are generally desirable since they indicate that an organization is not losing a lot of its revenues to expenses. Values close to zero are normal, and negative numbers indicate the organization is functioning at a deficit.
Note: This data is available only for organizations that file full 990s. [Organizations with revenues <$200,000 and total assets <$500,000 have the option to not file a full 990 and file an EZ instead.]
Numerator: Total Revenue - Total Functional
Expenses
Denominator: Total Revenue
On 990: Part VIII, Line 12A -SOI PC EXTRACTS: totrevenue
On EZ: Part I, line 9 -SOI PC EXTRACTS: totrevnue
# TEMPORARY VARIABLES
<- ( core$totrevenue-core$totfuncexpns)
postd_profits <- ( core$totrevenue)
revenue
# can't divide by zero
== 0 ] <- NA
revenue[ revenue
# SAVE RESULTS
$postd_profitmargin <- postd_profits / revenue
core
# summary( core$postd_profitmargin )
Check high and low values to see what makes sense.
.05 <- quantile( core$postd_profitmargin, 0.05, na.rm=T )
x.95 <- quantile( core$postd_profitmargin, 0.95, na.rm=T )
x
ggplot( core, aes(x = postd_profitmargin ) ) +
geom_density( alpha = 0.5) +
xlim( x.05, x.95 )
<- core
core2
# proportion of values that are negative
mean( core2$postd_profitmargin < 0, na.rm=T )
## [1] 0.4516837
$postd_profitmargin[ core2$postd_profitmargin < 0 ] <- 0
core2
# proption of values above 200%
mean( core2$postd_profitmargin > 50, na.rm=T )
## [1] 0.0003660322
$postd_profitmargin[ core2$postd_profitmargin > 50 ] <- 50
core2
.05 <- quantile( core$postd_profitmargin, 0.05, na.rm=T )
x.95 <- quantile( core$postd_profitmargin, 0.95, na.rm=T )
x
<- core
core2
# proportion of values that are negative
# mean( core2$der < 0, na.rm=T )
# proption of values above 1%
# mean( core2$der > 5, na.rm=T )
# WINSORIZATION AT 5th and 95th PERCENTILES
$postd_profitmargin[ core2$postd_profitmargin < x.05 ] <- x.05
core2$postd_profitmargin[ core2$postd_profitmargin > x.95 ] <- x.95 core2
Tax data is available for full 990 filers, so this metric does not describe any organizations with Gross receipts < $200,000 and Total assets < $500,000. Some organizations with receipts or assets below those thresholds may have filed a full 990, but these would be exceptions.
The data have been capped to those with values between 5% and 95% of the normal distribution to cut off outliers and exempt organizations with zero profitability (though negative values are allowed still).
Any cited works here…
Convert all monetary variables to thousands of dollars. Scale metric up (multiply by 100) for readability.
%>%
core2 mutate( # postd_profitmargin = postd_profitmargin * 10000,
totrevenue = totrevenue / 1000,
totfuncexpns = totfuncexpns / 1000,
lndbldgsequipend = lndbldgsequipend / 1000,
totassetsend = totassetsend / 1000,
totliabend = totliabend / 1000,
totnetassetend = totnetassetend / 1000 ) %>%
select( STATE, NTEE1, NTMAJ12,
postd_profitmargin,
AGE,
totrevenue, totfuncexpns,
lndbldgsequipend, totassetsend, %>%
totnetassetend, totliabend )
stargazer( type = s.type,
digits=0,
summary.stat = c("min","p25","median",
"mean","p75","max", "sd"),
covariate.labels = c("Post-Depreciation Profitability Margin (x100)", "Age",
"Revenue ($1k)", "Expenses($1k)",
"Buildings ($1k)", "Total Assets ($1k)",
"Net Assets ($1k)", "Liabiliies ($1k)"))
Statistic | Min | Pctl(25) | Median | Mean | Pctl(75) | Max | St. Dev. |
Post-Depreciation Profitability Margin (x100) | -1 | -0 | 0 | -0 | 0 | 1 | 0 |
Age | 3 | 22 | 30 | 32 | 41 | 95 | 15 |
Revenue (1k) | -5,377 | 259 | 909 | 4,522 | 3,672 | 408,932 | 14,286 |
Expenses(1k) | 0 | 263 | 840 | 4,192 | 3,328 | 382,667 | 13,466 |
Buildings (1k) | -4 | 79 | 824 | 3,504 | 2,868 | 513,509 | 13,210 |
Total Assets (1k) | -7,552 | 778 | 2,446 | 9,262 | 7,477 | 672,021 | 27,039 |
Net Assets (1k) | -178,870 | 156 | 1,094 | 4,553 | 4,079 | 531,068 | 15,470 |
Liabiliies (1k) | -2,707 | 115 | 816 | 4,709 | 3,133 | 705,623 | 18,722 |
What proportion of orgs have post-depreciation profitability margins equal to zero?
<- mean( core2$postd_profitmargin == 0, na.rm=T ) prop.zero
In the sample, 0 percent of the organizations have post-depreciation profitability margins equal to zero. These organizations are dropped from subsequent graphs to keep the visualizations clean. The interpretation of the graphics should be the distributions of post-depreciation profitability margins for organizations that have positive or negative values.
###
### ADD QUANTILES
###
### function create_quantiles() defined in r-functions.R
$exp.q <- create_quantiles( var=core2$totfuncexpns, n.groups=5 )
core2$rev.q <- create_quantiles( var=core2$totrevenue, n.groups=5 )
core2$asset.q <- create_quantiles( var=core2$totnetassetend, n.groups=5 )
core2$age.q <- create_quantiles( var=core2$AGE, n.groups=5 )
core2$land.q <- create_quantiles( var=core2$lndbldgsequipend, n.groups=5 ) core2
<- min( core2$postd_profitmargin, na.rm=T )
min.x <- max( core2$postd_profitmargin, na.rm=T )
max.x
ggplot( core2, aes(x = postd_profitmargin )) +
geom_density( alpha = 0.5 ) +
xlim( min.x, max.x ) +
xlab( variable.label ) +
theme( axis.title.y=element_blank(),
axis.text.y=element_blank(),
axis.ticks.y=element_blank() )
<- core2 %>% filter( ! is.na(NTEE1) )
core3 table( core3$NTEE1) %>% sort(decreasing=TRUE) %>% kable()
Var1 | Freq |
---|---|
Housing | 2837 |
Community Development | 1585 |
Human Services | 1102 |
<- table( factor(core3$NTEE1) )
t <- data.frame( x=Inf, y=Inf,
df N=paste0( "N=", as.character(t) ),
NTEE1=names(t) )
ggplot( core3, aes( x=postd_profitmargin ) ) +
geom_density( alpha = 0.5) +
# xlim( -0.1, 1 ) +
labs( title="Nonprofit Subsectors" ) +
xlab( variable.label ) +
facet_wrap( ~ NTEE1, nrow=1 ) +
theme_minimal( base_size = 15 ) +
theme( axis.title.y=element_blank(),
axis.text.y=element_blank(),
axis.ticks.y=element_blank(),
strip.text = element_text( face="bold") ) + # size=20
geom_text( data=df,
aes(x, y, label=N ),
hjust=2, vjust=3,
color="gray60", size=6 )
table( core2$Region) %>% kable()
Var1 | Freq |
---|---|
Midwest | 1444 |
Northeast | 1368 |
South | 1610 |
West | 1088 |
<- table( factor(core2$Region) )
t <- data.frame( x=Inf, y=Inf,
df N=paste0( "N=", as.character(t) ),
Region=names(t) )
%>%
core2 filter( ! is.na(Region) ) %>%
ggplot( aes(postd_profitmargin) ) +
geom_density( alpha = 0.5 ) +
xlab( "Census Regions" ) +
ylab( variable.label ) +
facet_wrap( ~ Region, nrow=3 ) +
theme_minimal( base_size = 22 ) +
theme( axis.title.y=element_blank(),
axis.text.y=element_blank(),
axis.ticks.y=element_blank() ) +
geom_text( data=df,
aes(x, y, label=N ),
hjust=2, vjust=3,
color="gray60", size=6 )
table( core2$Division ) %>% kable()
Var1 | Freq |
---|---|
East North Central | 1038 |
East South Central | 289 |
Middle Atlantic | 904 |
Mountain | 303 |
New England | 464 |
Pacific | 785 |
South Atlantic | 900 |
West North Central | 406 |
West South Central | 421 |
<- table( factor(core2$Division) )
t <- data.frame( x=Inf, y=Inf,
df N=paste0( "N=", as.character(t) ),
Division=names(t) )
%>%
core2 filter( ! is.na(Division) ) %>%
ggplot( aes(postd_profitmargin) ) +
geom_density( alpha = 0.5 ) +
xlab( "Census Sub-Regions (10)" ) +
ylab( variable.label ) +
facet_wrap( ~ Division, nrow=3 ) +
theme_minimal( base_size = 22 ) +
theme( axis.title.y=element_blank(),
axis.text.y=element_blank(),
axis.ticks.y=element_blank() ) +
geom_text( data=df,
aes(x, y, label=N ),
hjust=2, vjust=3,
color="gray60", size=6 )
ggplot( core2, aes(x = totfuncexpns )) +
geom_density( alpha = 0.5 ) +
xlim( quantile(core2$totfuncexpns, c(0.02,0.98), na.rm=T ) )
$totfuncexpns[ core2$totfuncexpns < 1 ] <- 1
core2# core2$totfuncexpns[ is.na(core2$totfuncexpns) ] <- 1
if( nrow(core2) > 10000 )
{<- sample_n( core2, 10000 )
core3 else
}
{<- core2
core3
}
jplot( log10(core3$totfuncexpns), core3$postd_profitmargin,
xlab="Nonprofit Size (logged Expenses)",
ylab=variable.label,
xaxt="n", xlim=c(3,10) )
axis( side=1,
at=c(3,4,5,6,7,8,9,10),
labels=c("1k","10k","100k","1m","10m","100m","1b","10b") )
%>%
core2 filter( ! is.na(exp.q) ) %>%
ggplot( aes(postd_profitmargin) ) +
geom_density( alpha = 0.5) +
labs( title="Nonprofit Size (logged expenses)" ) +
xlab( variable.label ) +
facet_wrap( ~ exp.q, nrow=3 ) +
theme_minimal( base_size = 22 ) +
theme( axis.title.y=element_blank(),
axis.text.y=element_blank(),
axis.ticks.y=element_blank() )
ggplot( core2, aes(x = totrevenue )) +
geom_density( alpha = 0.5 ) +
xlim( quantile(core2$totrevenue, c(0.02,0.98), na.rm=T ) ) +
theme( axis.title.y=element_blank(),
axis.text.y=element_blank(),
axis.ticks.y=element_blank() )
$totrevenue[ core2$totrevenue < 1 ] <- 1
core2
if( nrow(core2) > 10000 )
{<- sample_n( core2, 10000 )
core3 else
}
{<- core2
core3
}
jplot( log10(core3$totrevenue), core3$postd_profitmargin,
xlab="Nonprofit Size (logged Revenue)",
ylab=variable.label,
xaxt="n", xlim=c(3,10) )
axis( side=1,
at=c(3,4,5,6,7,8,9,10),
labels=c("1k","10k","100k","1m","10m","100m","1b","10b") )
%>%
core2 filter( ! is.na(rev.q) ) %>%
ggplot( aes(postd_profitmargin) ) +
geom_density( alpha = 0.5 ) +
labs( title="Nonprofit Size (logged revenues)" ) +
xlab( variable.label ) +
facet_wrap( ~ rev.q, nrow=3 ) +
theme_minimal( base_size = 22 ) +
theme( axis.title.y=element_blank(),
axis.text.y=element_blank(),
axis.ticks.y=element_blank() )
ggplot( core2, aes(x = totnetassetend )) +
geom_density( alpha = 0.5) +
xlim( quantile(core2$totnetassetend, c(0.02,0.98), na.rm=T ) ) +
xlab( "Net Assets" ) +
theme( axis.title.y=element_blank(),
axis.text.y=element_blank(),
axis.ticks.y=element_blank() )
$totnetassetend[ core2$totnetassetend < 1 ] <- NA
core2
if( nrow(core2) > 10000 )
{<- sample_n( core2, 10000 )
core3 else
}
{<- core2
core3
}
jplot( log10(core3$totnetassetend), core3$postd_profitmargin,
xlab="Nonprofit Size (logged Net Assets)",
ylab=variable.label,
xaxt="n", xlim=c(3,10) )
axis( side=1,
at=c(3,4,5,6,7,8,9,10),
labels=c("1k","10k","100k","1m","10m","100m","1b","10b") )
$totnetassetend[ core2$totnetassetend < 1 ] <- NA
core2$asset.q <- create_quantiles( var=core2$totnetassetend, n.groups=5 )
core2
%>%
core2 filter( ! is.na(asset.q) ) %>%
ggplot( aes(postd_profitmargin) ) +
geom_density( alpha = 0.5 ) +
labs( title="Nonprofit Size (logged net assets, if assets > 0)" ) +
xlab( variable.label ) +
ylab( "" ) +
facet_wrap( ~ asset.q, nrow=3 ) +
theme_minimal( base_size = 22 ) +
theme( axis.title.y=element_blank(),
axis.text.y=element_blank(),
axis.ticks.y=element_blank() )
Total Assets for Comparison
$totassetsend[ core2$totassetsend < 1 ] <- NA
core2$tot.asset.q <- create_quantiles( var=core2$totassetsend, n.groups=5 )
core2
if( nrow(core2) > 10000 )
{<- sample_n( core2, 10000 )
core3 else
}
{<- core2
core3
}
jplot( log10(core3$totassetsend), core3$postd_profitmargin,
xlab="Nonprofit Size (logged Total Assets)",
ylab=variable.label,
xaxt="n", xlim=c(3,10) )
axis( side=1,
at=c(3,4,5,6,7,8,9,10),
labels=c("1k","10k","100k","1m","10m","100m","1b","10b") )
ggplot( core2, aes(x = totassetsend )) +
geom_density( alpha = 0.5) +
xlim( quantile(core2$totassetsend, c(0.02,0.98), na.rm=T ) ) +
xlab( "Net Assets" ) +
theme( axis.title.y=element_blank(),
axis.text.y=element_blank(),
axis.ticks.y=element_blank() )
%>%
core2 filter( ! is.na(tot.asset.q) ) %>%
ggplot( aes(postd_profitmargin) ) +
geom_density( alpha = 0.5 ) +
xlab( "Nonprofit Size (logged total assets, if assets > 0)" ) +
ylab( variable.label ) +
facet_wrap( ~ tot.asset.q, nrow=3 ) +
theme_minimal( base_size = 22 ) +
theme( axis.title.y=element_blank(),
axis.text.y=element_blank(),
axis.ticks.y=element_blank() )
ggplot( core2, aes(x = AGE )) +
geom_density( alpha = 0.5 )
$AGE[ core2$AGE < 1 ] <- NA
core2
if( nrow(core2) > 10000 )
{<- sample_n( core2, 10000 )
core3 else
}
{<- core2
core3
}
jplot( core3$AGE, core3$postd_profitmargin,
xlab="Nonprofit Age",
ylab=variable.label )
%>%
core2 filter( ! is.na(age.q) ) %>%
ggplot( aes(postd_profitmargin) ) +
geom_density( alpha = 0.5 ) +
labs( title="Nonprofit Age" ) +
xlab( variable.label ) +
ylab( "" ) +
facet_wrap( ~ age.q, nrow=3 ) +
theme_minimal( base_size = 22 ) +
theme( axis.title.y=element_blank(),
axis.text.y=element_blank(),
axis.ticks.y=element_blank() )
ggplot( core2, aes(x = lndbldgsequipend )) +
geom_density( alpha = 0.5 )
$lndbldgsequipend[ core2$lndbldgsequipend < 1 ] <- NA
core2if( nrow(core2) > 10000 )
{<- sample_n( core2, 10000 )
core3 else
}
{<- core2
core3
jplot( log10(core3$lndbldgsequipend), core3$postd_profitmargin,
xlab="Land and Building Value (logged)",
ylab=variable.label,
xaxt="n", xlim=c(3,10) )
axis( side=1,
at=c(3,4,5,6,7,8,9,10),
labels=c("1k","10k","100k","1m","10m","100m","1b","10b") )
}
%>%
core2 filter( ! is.na(land.q) ) %>%
ggplot( aes(postd_profitmargin) ) +
geom_density( alpha = 0.5 ) +
labs( title="Land and Building Value" ) +
xlab( variable.label ) +
ylab( "" ) +
facet_wrap( ~ land.q, nrow=3 ) +
theme_minimal( base_size = 22 ) +
theme( axis.title.y=element_blank(),
axis.text.y=element_blank(),
axis.ticks.y=element_blank() )
<- select( core, ein, tax_pd, postd_profitmargin )
core.postd_profitmargin saveRDS( core.postd_profitmargin, "03-data-ratios/m-09-post-d-profit-margin.rds" )
write.csv( core.postd_profitmargin, "03-data-ratios/m-09-post-d-profit-margin.csv" )