Metric Construction

Definition & Interpretation

\[Pre\text-Depreciation \: Profitability \: Margin = \frac{Totale \: Revenue- (Total \: Expenses - Depreciation \: Expenses)}{Total \: Revenue} \]

Pre-depreciation profit is an income measure used to determine profit before incorporating non-cash expenses on a balance sheet. Pre-depreciation profit is calculated because it provides a cleaner number that can help determine a organization’s ability to service debt. Much like free cash flow, pre-depreciation profit is a measure of a organization’s actual cash flow. Non-expense items lower an organization’s reported earnings, so a pre-depreciation profit would show a higher profit in comparison to profits calculated after depreciation.

High values in this metric are generally desirable since they indicate that an organization is not losing a lot of its revenues to expenses, though the amount of expense exempted from this metric due to depreciation (which for community development corporations can represent a large portion of their expenses), makes it less of an indicator of true profitability and more an indicator of an organization’s cash flow. Values close to zero are normal, and negative numbers indicate the organization is functioning at a deficit.

Variables

Note: This data is available only for organizations that file full 990s. [Organizations with revenues <$200,000 and total assets <$500,000 have the option to not file a full 990 and file an EZ instead.]

  • Numerator: Total Revenue - (Total Functional Expenses - Depreciation Expenses)

    • On 990: Part VIII, line 12A - (Part IX, line 25A - Part IX, line 22A)
      • SOI PC EXTRACTS: totrevenue - (totfuncexpns - deprcatndepletn)
    • On EZ:Not available
  • Denominator: Total Revenue

    • On 990: Part VIII, Line 12A -SOI PC EXTRACTS: totrevenue

    • On EZ: Part I, line 9 -SOI PC EXTRACTS: totrevnue



# TEMPORARY VARIABLES 
pred_profits  <- ( core$totrevenue-(core$totfuncexpns-core$deprcatndepletn))
revenue <- ( core$totrevenue)

# can't divide by zero
revenue[ revenue == 0 ] <- NA

# SAVE RESULTS 
core$pred_profitmargin <-  pred_profits / revenue
                     
# summary( core$pred_profitmargin )

Standardize Scales

Check high and low values to see what makes sense.

x.05 <- quantile( core$pred_profitmargin, 0.05, na.rm=T )
x.95 <- quantile( core$pred_profitmargin, 0.95, na.rm=T )

ggplot( core, aes(x = pred_profitmargin ) ) +  
  geom_density( alpha = 0.5) + 
  xlim( x.05, x.95 ) 

Winsorization: All extreme values have been capped by replacing any values below the 5% distribution and above the 95% distribution with the 5% and 95% values. Consequently the end tails to all density charts may be slightly higher than reality but the visuals will be scaled for better viewing (not skewed by outliers).

core2 <- core

# proportion of values that are negative
mean( core2$pred_profitmargin < 0, na.rm=T ) 
## [1] 0.28193
core2$pred_profitmargin[ core2$pred_profitmargin < 0 ] <- 0

# proption of values above 200% 
mean( core2$pred_profitmargin > 50, na.rm=T ) 
## [1] 0.0003784295
core2$pred_profitmargin[ core2$pred_profitmargin > 50 ] <- 50



x.05 <- quantile( core$pred_profitmargin, 0.05, na.rm=T )
x.95 <- quantile( core$pred_profitmargin, 0.95, na.rm=T )

core2 <- core

# proportion of values that are negative
# mean( core2$der < 0, na.rm=T ) 

# proption of values above 1% 
# mean( core2$der > 5, na.rm=T ) 

# WINSORIZATION AT 5th and 95th PERCENTILES

core2$pred_profitmargin[ core2$pred_profitmargin < x.05 ] <- x.05
core2$pred_profitmargin[ core2$pred_profitmargin > x.95 ] <- x.95

Metric Scope

Tax data is available for full 990 filers, so this metric does not describe any organizations with Gross receipts < $200,000 and Total assets < $500,000. Some organizations with receipts or assets below those thresholds may have filed a full 990, but these would be exceptions.

The data have been capped to those with values between 5% and 95% of the normal distribution to cut off outliers and exempt organizations with zero profitability (though negative values are allowed still).

Descriptive Statistics

Convert all monetary variables to thousands of dollars. Scale margin (multiply it by 100) for readability


core2 %>%
  mutate( pred_profitmargin = pred_profitmargin * 100,
    totrevenue = totrevenue / 1000,
    totfuncexpns = totfuncexpns / 1000, 
    lndbldgsequipend = lndbldgsequipend / 1000,
    totassetsend = totassetsend / 1000,
    totliabend = totliabend / 1000,
    totnetassetend = totnetassetend / 1000 ) %>% 
  select( STATE,  NTEE1, NTMAJ12, 
          pred_profitmargin, 
          AGE, 
          totrevenue, totfuncexpns, 
          lndbldgsequipend, totassetsend, 
          totnetassetend, totliabend ) %>%

  stargazer( type = s.type, 
             digits=0, 
             summary.stat = c("min","p25","median",
                              "mean","p75","max", "sd"),
             covariate.labels = c("Pre-Depreciation Profitability Margin (x100)", "Age", 
                                  "Revenue ($1k)", "Expenses($1k)", 
                                  "Buildings ($1k)", "Total Assets ($1k)",
                                  "Net Assets ($1k)", "Liabiliies ($1k)"))
Statistic Min Pctl(25) Median Mean Pctl(75) Max St. Dev.
Pre-Depreciation Profitability Margin (x100) -56 -1 6 9 22 69 28
Age 3 22 30 32 41 95 15
Revenue (1k) -5,377 259 909 4,522 3,672 408,932 14,286
Expenses(1k) 0 263 840 4,192 3,328 382,667 13,466
Buildings (1k) -4 79 824 3,504 2,868 513,509 13,210
Total Assets (1k) -7,552 778 2,446 9,262 7,477 672,021 27,039
Net Assets (1k) -178,870 156 1,094 4,553 4,079 531,068 15,470
Liabiliies (1k) -2,707 115 816 4,709 3,133 705,623 18,722

What proportion of orgs have pre-depreciation profitability margins equal to zero?

prop.zero <- mean( core2$pred_profitmargin == 0, na.rm=T )

In the sample, 0 percent of the organizations have pre-depreciation profitability margins equal to zero. These organizations are dropped from subsequent graphs to keep the visualizations clean. The interpretation of the graphics should be the distributions of pre-depreciation profitability margins for organizations that have positive or negative values.

###
### ADD QUANTILES
###
###   function create_quantiles() defined in r-functions.R

core2$exp.q   <- create_quantiles( var=core2$totfuncexpns,   n.groups=5 )
core2$rev.q   <- create_quantiles( var=core2$totrevenue,     n.groups=5 )
core2$asset.q <- create_quantiles( var=core2$totnetassetend, n.groups=5 )
core2$age.q   <- create_quantiles( var=core2$AGE,            n.groups=5 )
core2$land.q   <- create_quantiles( var=core2$lndbldgsequipend, n.groups=5 )

Pre-Depreciation Profitability Margin Density

min.x <- min( core2$pred_profitmargin, na.rm=T )
max.x <- max( core2$pred_profitmargin, na.rm=T )

ggplot( core2, aes(x = pred_profitmargin )) +  
  geom_density( alpha = 0.5 ) + 
  xlim( min.x, max.x  ) +
  xlab( variable.label ) +
  theme( axis.title.y=element_blank(),
         axis.text.y=element_blank(), 
         axis.ticks.y=element_blank() )

Pre-Depreciation Profitability Margin by NTEE Major Code

core3 <- core2 %>% filter( ! is.na(NTEE1) )
table( core3$NTEE1) %>% sort(decreasing=TRUE) %>% kable()
Var1 Freq
Housing 2837
Community Development 1585
Human Services 1102

t <- table( factor(core3$NTEE1) ) 
df <- data.frame( x=Inf, y=Inf, 
                  N=paste0( "N=", as.character(t) ), 
                  NTEE1=names(t) )

ggplot( core3, aes( x=pred_profitmargin ) ) + 
  geom_density( alpha = 0.5) + 
  # xlim( -0.1, 1 ) +
  labs( title="Nonprofit Subsectors" ) + 
  xlab( variable.label ) + 
  facet_wrap( ~ NTEE1, nrow=1 ) + 
    theme_minimal( base_size = 15 )  + 
    theme( axis.title.y=element_blank(),
           axis.text.y=element_blank(), 
           axis.ticks.y=element_blank(),
           strip.text = element_text( face="bold") ) +  # size=20 
  geom_text( data=df, 
             aes(x, y, label=N ), 
             hjust=2, vjust=3, 
             color="gray60", size=6 )

Pre-Depreciation Profitability Margin by Region

table( core2$Region) %>% kable()
Var1 Freq
Midwest 1444
Northeast 1368
South 1610
West 1088
t <- table( factor(core2$Region) ) 
df <- data.frame( x=Inf, y=Inf, 
                  N=paste0( "N=", as.character(t) ), 
                  Region=names(t) )

core2 %>% 
  filter( ! is.na(Region) ) %>% 
  ggplot( aes(pred_profitmargin) )  + 
    geom_density( alpha = 0.5 ) + 
    xlab( "Census Regions" ) + 
    ylab( variable.label ) +
    facet_wrap( ~ Region, nrow=3 ) + 
    theme_minimal( base_size = 22 )  + 
    theme( axis.title.y=element_blank(),
           axis.text.y=element_blank(), 
           axis.ticks.y=element_blank() ) + 
    geom_text( data=df, 
             aes(x, y, label=N ), 
             hjust=2, vjust=3, 
             color="gray60", size=6 )

table( core2$Division ) %>% kable()
Var1 Freq
East North Central 1038
East South Central 289
Middle Atlantic 904
Mountain 303
New England 464
Pacific 785
South Atlantic 900
West North Central 406
West South Central 421
t <- table( factor(core2$Division) ) 
df <- data.frame( x=Inf, y=Inf, 
                  N=paste0( "N=", as.character(t) ), 
                  Division=names(t) )

core2 %>% 
  filter( ! is.na(Division) ) %>% 
  ggplot( aes(pred_profitmargin) )  + 
    geom_density( alpha = 0.5 ) + 
    xlab( "Census Sub-Regions (10)" ) + 
    ylab( variable.label ) +
    facet_wrap( ~ Division, nrow=3 ) + 
    theme_minimal( base_size = 22 )  + 
    theme( axis.title.y=element_blank(),
           axis.text.y=element_blank(), 
           axis.ticks.y=element_blank() ) + 
    geom_text( data=df, 
             aes(x, y, label=N ), 
             hjust=2, vjust=3, 
             color="gray60", size=6 ) 

Pre-Depreciation Profitability Margin by Nonprofit Size (Expenses)

ggplot( core2, aes(x = totfuncexpns )) +  
  geom_density( alpha = 0.5 ) + 
  xlim( quantile(core2$totfuncexpns, c(0.02,0.98), na.rm=T ) )

core2$totfuncexpns[ core2$totfuncexpns < 1 ] <- 1
# core2$totfuncexpns[ is.na(core2$totfuncexpns) ] <- 1

if( nrow(core2) > 10000 )
{
  core3 <- sample_n( core2, 10000 )
} else
{
  core3 <- core2
}

jplot( log10(core3$totfuncexpns), core3$pred_profitmargin, 
       xlab="Nonprofit Size (logged Expenses)", 
       ylab=variable.label,
       xaxt="n", xlim=c(3,10) )
axis( side=1, 
      at=c(3,4,5,6,7,8,9,10), 
      labels=c("1k","10k","100k","1m","10m","100m","1b","10b") )

core2 %>% 
  filter( ! is.na(exp.q) ) %>% 
  ggplot( aes(pred_profitmargin) )  + 
    geom_density( alpha = 0.5) + 
    labs( title="Nonprofit Size (logged expenses)" ) + 
    xlab( variable.label ) +
    facet_wrap( ~ exp.q, nrow=3 ) + 
    theme_minimal( base_size = 22 )  + 
    theme( axis.title.y=element_blank(),
           axis.text.y=element_blank(), 
           axis.ticks.y=element_blank() )

Pre-Depreciation Profitability Margin by Nonprofit Size (Revenue)

ggplot( core2, aes(x = totrevenue )) +  
  geom_density( alpha = 0.5 ) + 
  xlim( quantile(core2$totrevenue, c(0.02,0.98), na.rm=T ) ) + 
  theme( axis.title.y=element_blank(),
           axis.text.y=element_blank(), 
           axis.ticks.y=element_blank() )

core2$totrevenue[ core2$totrevenue < 1 ] <- 1

if( nrow(core2) > 10000 )
{
  core3 <- sample_n( core2, 10000 )
} else
{
  core3 <- core2
}

jplot( log10(core3$totrevenue), core3$pred_profitmargin, 
       xlab="Nonprofit Size (logged Revenue)", 
       ylab=variable.label,
       xaxt="n", xlim=c(3,10) )
axis( side=1, 
      at=c(3,4,5,6,7,8,9,10), 
      labels=c("1k","10k","100k","1m","10m","100m","1b","10b") )

core2 %>% 
  filter( ! is.na(rev.q) ) %>% 
  ggplot( aes(pred_profitmargin) )  + 
    geom_density( alpha = 0.5 ) + 
    labs( title="Nonprofit Size (logged revenues)" ) + 
    xlab( variable.label ) +
    facet_wrap( ~ rev.q, nrow=3 ) + 
    theme_minimal( base_size = 22 )  + 
    theme( axis.title.y=element_blank(),
           axis.text.y=element_blank(), 
           axis.ticks.y=element_blank() )

Pre-Depreciation Profitability Margin by Nonprofit Size (Net Assets)

ggplot( core2, aes(x = totnetassetend )) +  
  geom_density( alpha = 0.5) + 
  xlim( quantile(core2$totnetassetend, c(0.02,0.98), na.rm=T ) ) + 
  xlab( "Net Assets" ) +
    theme( axis.title.y=element_blank(),
           axis.text.y=element_blank(), 
           axis.ticks.y=element_blank() )

core2$totnetassetend[ core2$totnetassetend < 1 ] <- NA

if( nrow(core2) > 10000 )
{
  core3 <- sample_n( core2, 10000 )
} else
{
  core3 <- core2
}

jplot( log10(core3$totnetassetend), core3$pred_profitmargin, 
       xlab="Nonprofit Size (logged Net Assets)", 
       ylab=variable.label,
       xaxt="n", xlim=c(3,10) )
axis( side=1, 
      at=c(3,4,5,6,7,8,9,10), 
      labels=c("1k","10k","100k","1m","10m","100m","1b","10b") )

core2$totnetassetend[ core2$totnetassetend < 1 ] <- NA
core2$asset.q <- create_quantiles( var=core2$totnetassetend, n.groups=5 )

core2 %>% 
  filter( ! is.na(asset.q) ) %>% 
  ggplot( aes(pred_profitmargin) )  + 
    geom_density( alpha = 0.5 ) + 
    labs( title="Nonprofit Size (logged net assets, if assets > 0)" ) + 
    xlab( variable.label ) + 
    ylab( "" ) + 
    facet_wrap( ~ asset.q, nrow=3 ) + 
    theme_minimal( base_size = 22 )  + 
    theme( axis.title.y=element_blank(),
           axis.text.y=element_blank(), 
           axis.ticks.y=element_blank() )

Total Assets for Comparison

core2$totassetsend[ core2$totassetsend < 1 ] <- NA
core2$tot.asset.q <- create_quantiles( var=core2$totassetsend, n.groups=5 )

if( nrow(core2) > 10000 )
{
  core3 <- sample_n( core2, 10000 )
} else
{
  core3 <- core2
}

jplot( log10(core3$totassetsend), core3$pred_profitmargin, 
       xlab="Nonprofit Size (logged Total Assets)", 
       ylab=variable.label,
       xaxt="n", xlim=c(3,10) )
axis( side=1, 
      at=c(3,4,5,6,7,8,9,10), 
      labels=c("1k","10k","100k","1m","10m","100m","1b","10b") )

ggplot( core2, aes(x = totassetsend )) +  
  geom_density( alpha = 0.5) + 
  xlim( quantile(core2$totassetsend, c(0.02,0.98), na.rm=T ) ) + 
  xlab( "Net Assets" ) +
    theme( axis.title.y=element_blank(),
           axis.text.y=element_blank(), 
           axis.ticks.y=element_blank() )

core2 %>% 
  filter( ! is.na(tot.asset.q) ) %>% 
  ggplot( aes(pred_profitmargin) )  + 
    geom_density( alpha = 0.5 ) + 
    xlab( "Nonprofit Size (logged total assets, if assets > 0)" ) + 
    ylab( variable.label ) +
    facet_wrap( ~ tot.asset.q, nrow=3 ) + 
    theme_minimal( base_size = 22 )  + 
    theme( axis.title.y=element_blank(),
           axis.text.y=element_blank(), 
           axis.ticks.y=element_blank() )

Pre-Depreciation Profitability Margin by Nonprofit Age

ggplot( core2, aes(x = AGE )) +  
  geom_density( alpha = 0.5 )  

core2$AGE[ core2$AGE < 1 ] <- NA

if( nrow(core2) > 10000 )
{
  core3 <- sample_n( core2, 10000 )
} else
{
  core3 <- core2
}

jplot( core3$AGE, core3$pred_profitmargin, 
       xlab="Nonprofit Age", 
       ylab=variable.label ) 

core2 %>% 
  filter( ! is.na(age.q) ) %>% 
  ggplot( aes(pred_profitmargin) )  + 
    geom_density( alpha = 0.5 ) + 
    labs( title="Nonprofit Age" ) + 
    xlab( variable.label ) +
    ylab( "" ) +
    facet_wrap( ~ age.q, nrow=3 ) + 
    theme_minimal( base_size = 22 )  + 
    theme( axis.title.y=element_blank(),
           axis.text.y=element_blank(), 
           axis.ticks.y=element_blank() )

Pre-Depreciation Profitability Margin by Land and Building Value

ggplot( core2, aes(x = lndbldgsequipend )) +  
  geom_density( alpha = 0.5 )  

core2$lndbldgsequipend[ core2$lndbldgsequipend < 1 ] <- NA
if( nrow(core2) > 10000 )
{
  core3 <- sample_n( core2, 10000 )
} else
{
  core3 <- core2


jplot( log10(core3$lndbldgsequipend), core3$pred_profitmargin, 
       xlab="Land and Building Value (logged)", 
       ylab=variable.label,
       xaxt="n", xlim=c(3,10) )
axis( side=1, 
      at=c(3,4,5,6,7,8,9,10), 
      labels=c("1k","10k","100k","1m","10m","100m","1b","10b") )
}

core2 %>% 
  filter( ! is.na(land.q) ) %>% 
  ggplot( aes(pred_profitmargin) )  + 
    geom_density( alpha = 0.5 ) + 
    labs( title="Land and Building Value" ) + 
    xlab( variable.label ) +
    ylab( "" ) +
    facet_wrap( ~ land.q, nrow=3 ) + 
    theme_minimal( base_size = 22 )  + 
    theme( axis.title.y=element_blank(),
           axis.text.y=element_blank(), 
           axis.ticks.y=element_blank() )

Save Metrics

core.pred_profitmargin <- select( core, ein, tax_pd, pred_profitmargin )
saveRDS( core.pred_profitmargin, "03-data-ratios/m-08-pre-d-profit-margin.rds" )
write.csv( core.pred_profitmargin, "03-data-ratios/m-08-pre-d-profit-margin.csv" )