
\[Assets\: to\: Revenues\:Ratio = \frac{Total\: Assets}{Total \: Revenues} \]
This metric measures how many dollars of assets it has per dollar of annual revenues (how many dollars of revenue have been converted into assets in the past or that year for the current year).
Generally, this ratio should be higher for organizations with large inventories of developments or large endowments.
Note: This data is available only for all organizations.
Numerator: Total Assets
Denominator: Total Revenues
On 990: Part VIII, Line 12A -SOI PC EXTRACTS: totrevenue
On EZ: Part I, Line 9 -SOI PC EXTRACTS: totrevnue
# TEMPORARY VARIABLES
total_assets <- core$totassetsend
total_revenues <- core$totrevenue
# can't divide by zero
total_revenues[ total_revenues == 0 ] <- NA
# SAVE RESULTS
core$asset_rev_ratio <- total_assets / total_revenues
# summary( core$asset_rev_ratio )Check high and low values to see what makes sense.
x.05 <- quantile( core$asset_rev_ratio, 0.05, na.rm=T )
x.95 <- quantile( core$asset_rev_ratio, 0.95, na.rm=T )
ggplot( core, aes(x = asset_rev_ratio ) ) +
geom_density( alpha = 0.5) +
xlim( x.05, x.95 ) 
core2 <- core
# proportion of values that are negative
#mean( core2$asset_rev_ratio < 0, na.rm=T )
#core2$asset_rev_ratio[ core2$asset_rev_ratio < 0 ] <- 0
# proption of values above 200%
#mean( core2$asset_rev_ratio > 50, na.rm=T )
#core2$asset_rev_ratio[ core2$asset_rev_ratio > 50 ] <- 50
x.05 <- quantile( core$asset_rev_ratio, 0.05, na.rm=T )
x.95 <- quantile( core$asset_rev_ratio, 0.95, na.rm=T )
core2 <- core
# proportion of values that are negative
# mean( core2$der < 0, na.rm=T )
# proption of values above 1%
# mean( core2$der > 5, na.rm=T )
# WINSORIZATION AT 5th and 95th PERCENTILES
core2$asset_rev_ratio[ core2$asset_rev_ratio < x.05 ] <- x.05
core2$asset_rev_ratio[ core2$asset_rev_ratio > x.95 ] <- x.95Tax data is available for full 990 filers and 990EZ filers (organizations with Gross receipts < $200,000 and Total assets < $500,000).
The data have been capped to those with values between 5% and 95% of the normal distribution to cut off outliers and exempt organizations with zero profitability (though negative values are allowed still).
Note: All monetary variables have been converted to thousands of dollars.
core2 %>%
mutate( # asset_rev_ratio = asset_rev_ratio * 10000,
totrevenue = totrevenue / 1000,
totfuncexpns = totfuncexpns / 1000,
lndbldgsequipend = lndbldgsequipend / 1000,
totassetsend = totassetsend / 1000,
totliabend = totliabend / 1000,
totnetassetend = totnetassetend / 1000 ) %>%
select( STATE, NTEE1, NTMAJ12,
asset_rev_ratio,
AGE,
totrevenue, totfuncexpns,
lndbldgsequipend, totassetsend,
totnetassetend, totliabend ) %>%
stargazer( type = s.type,
digits=2,
summary.stat = c("min","p25","median",
"mean","p75","max", "sd"),
covariate.labels = c("Asset to Revenue Ratio", "Age",
"Revenue ($1k)", "Expenses($1k)",
"Buildings ($1k)", "Total Assets ($1k)",
"Net Assets ($1k)", "Liabiliies ($1k)"))| Statistic | Min | Pctl(25) | Median | Mean | Pctl(75) | Max | St. Dev. |
| Asset to Revenue Ratio | 0.18 | 0.79 | 2.54 | 4.78 | 5.98 | 22.82 | 5.90 |
| Age | 3 | 22 | 30 | 32.04 | 41 | 95 | 14.75 |
| Revenue (1k) | -5,376.77 | 258.90 | 909.40 | 4,521.71 | 3,672.25 | 408,932.00 | 14,285.64 |
| Expenses(1k) | 0.00 | 263.50 | 840.06 | 4,192.08 | 3,327.50 | 382,666.50 | 13,465.77 |
| Buildings (1k) | -4.48 | 79.14 | 824.25 | 3,504.47 | 2,868.50 | 513,508.80 | 13,210.06 |
| Total Assets (1k) | -7,552.11 | 777.90 | 2,446.11 | 9,261.85 | 7,477.25 | 672,021.00 | 27,038.89 |
| Net Assets (1k) | -178,869.70 | 155.67 | 1,093.86 | 4,553.27 | 4,078.70 | 531,067.70 | 15,470.31 |
| Liabiliies (1k) | -2,707.10 | 115.44 | 815.58 | 4,708.51 | 3,133.16 | 705,623.10 | 18,721.86 |
What proportion of orgs have asset to revenue ratios equal to zero?
prop.zero <- mean( core2$asset_rev_ratio == 0, na.rm=T )In the sample, 0 percent of the organizations have asset to revenue ratios equal to zero, meaning they have no assets. These organizations are dropped from subsequent graphs to keep the visualizations clean. The interpretation of the graphics should be the distributions of asset to revenue ratios for organizations that have positive or negative values.
###
### ADD QUANTILES
###
### function create_quantiles() defined in r-functions.R
core2$exp.q <- create_quantiles( var=core2$totfuncexpns, n.groups=5 )
core2$rev.q <- create_quantiles( var=core2$totrevenue, n.groups=5 )
core2$asset.q <- create_quantiles( var=core2$totnetassetend, n.groups=5 )
core2$age.q <- create_quantiles( var=core2$AGE, n.groups=5 )
core2$land.q <- create_quantiles(var=core2$lndbldgsequipend, n.groups=5 )min.x <- min( core2$asset_rev_ratio, na.rm=T )
max.x <- max( core2$asset_rev_ratio, na.rm=T )
ggplot( core2, aes(x = asset_rev_ratio )) +
geom_density( alpha = 0.5 ) +
xlim( min.x, max.x ) +
xlab( variable.label ) +
theme( axis.title.y=element_blank(),
axis.text.y=element_blank(),
axis.ticks.y=element_blank() )
core3 <- core2 %>% filter( ! is.na(NTEE1) )
table( core3$NTEE1) %>% sort(decreasing=TRUE) %>% kable()| Var1 | Freq |
|---|---|
| Housing | 2837 |
| Community Development | 1585 |
| Human Services | 1102 |
t <- table( factor(core3$NTEE1) )
df <- data.frame( x=Inf, y=Inf,
N=paste0( "N=", as.character(t) ),
NTEE1=names(t) )
ggplot( core3, aes( x=asset_rev_ratio ) ) +
geom_density( alpha = 0.5) +
# xlim( -0.1, 1 ) +
labs( title="Nonprofit Subsectors" ) +
xlab( variable.label ) +
facet_wrap( ~ NTEE1, nrow=1 ) +
theme_minimal( base_size = 15 ) +
theme( axis.title.y=element_blank(),
axis.text.y=element_blank(),
axis.ticks.y=element_blank(),
strip.text = element_text( face="bold") ) + # size=20
geom_text( data=df,
aes(x, y, label=N ),
hjust=2, vjust=3,
color="gray60", size=6 )
table( core2$Region) %>% kable()| Var1 | Freq |
|---|---|
| Midwest | 1444 |
| Northeast | 1368 |
| South | 1610 |
| West | 1088 |
t <- table( factor(core2$Region) )
df <- data.frame( x=Inf, y=Inf,
N=paste0( "N=", as.character(t) ),
Region=names(t) )
core2 %>%
filter( ! is.na(Region) ) %>%
ggplot( aes(asset_rev_ratio) ) +
geom_density( alpha = 0.5 ) +
xlab( "Census Regions" ) +
ylab( variable.label ) +
facet_wrap( ~ Region, nrow=3 ) +
theme_minimal( base_size = 22 ) +
theme( axis.title.y=element_blank(),
axis.text.y=element_blank(),
axis.ticks.y=element_blank() ) +
geom_text( data=df,
aes(x, y, label=N ),
hjust=2, vjust=3,
color="gray60", size=6 )
table( core2$Division ) %>% kable()| Var1 | Freq |
|---|---|
| East North Central | 1038 |
| East South Central | 289 |
| Middle Atlantic | 904 |
| Mountain | 303 |
| New England | 464 |
| Pacific | 785 |
| South Atlantic | 900 |
| West North Central | 406 |
| West South Central | 421 |
t <- table( factor(core2$Division) )
df <- data.frame( x=Inf, y=Inf,
N=paste0( "N=", as.character(t) ),
Division=names(t) )
core2 %>%
filter( ! is.na(Division) ) %>%
ggplot( aes(asset_rev_ratio) ) +
geom_density( alpha = 0.5 ) +
xlab( "Census Sub-Regions (10)" ) +
ylab( variable.label ) +
facet_wrap( ~ Division, nrow=3 ) +
theme_minimal( base_size = 22 ) +
theme( axis.title.y=element_blank(),
axis.text.y=element_blank(),
axis.ticks.y=element_blank() ) +
geom_text( data=df,
aes(x, y, label=N ),
hjust=2, vjust=3,
color="gray60", size=6 ) 
ggplot( core2, aes(x = totfuncexpns )) +
geom_density( alpha = 0.5 ) +
xlim( quantile(core2$totfuncexpns, c(0.02,0.98), na.rm=T ) )
core2$totfuncexpns[ core2$totfuncexpns < 1 ] <- 1
# core2$totfuncexpns[ is.na(core2$totfuncexpns) ] <- 1
if( nrow(core2) > 10000 )
{
core3 <- sample_n( core2, 10000 )
} else
{
core3 <- core2
}
jplot( log10(core3$totfuncexpns), core3$asset_rev_ratio,
xlab="Nonprofit Size (logged Expenses)",
ylab=variable.label,
xaxt="n", xlim=c(3,10) )
axis( side=1,
at=c(3,4,5,6,7,8,9,10),
labels=c("1k","10k","100k","1m","10m","100m","1b","10b") )
core2 %>%
filter( ! is.na(exp.q) ) %>%
ggplot( aes(asset_rev_ratio) ) +
geom_density( alpha = 0.5) +
labs( title="Nonprofit Size (logged expenses)" ) +
xlab( variable.label ) +
facet_wrap( ~ exp.q, nrow=3 ) +
theme_minimal( base_size = 22 ) +
theme( axis.title.y=element_blank(),
axis.text.y=element_blank(),
axis.ticks.y=element_blank() )
ggplot( core2, aes(x = totrevenue )) +
geom_density( alpha = 0.5 ) +
xlim( quantile(core2$totrevenue, c(0.02,0.98), na.rm=T ) ) +
theme( axis.title.y=element_blank(),
axis.text.y=element_blank(),
axis.ticks.y=element_blank() )
core2$totrevenue[ core2$totrevenue < 1 ] <- 1
if( nrow(core2) > 10000 )
{
core3 <- sample_n( core2, 10000 )
} else
{
core3 <- core2
}
jplot( log10(core3$totrevenue), core3$asset_rev_ratio,
xlab="Nonprofit Size (logged Revenue)",
ylab=variable.label,
xaxt="n", xlim=c(3,10) )
axis( side=1,
at=c(3,4,5,6,7,8,9,10),
labels=c("1k","10k","100k","1m","10m","100m","1b","10b") )
core2 %>%
filter( ! is.na(rev.q) ) %>%
ggplot( aes(asset_rev_ratio) ) +
geom_density( alpha = 0.5 ) +
labs( title="Nonprofit Size (logged revenues)" ) +
xlab( variable.label ) +
facet_wrap( ~ rev.q, nrow=3 ) +
theme_minimal( base_size = 22 ) +
theme( axis.title.y=element_blank(),
axis.text.y=element_blank(),
axis.ticks.y=element_blank() )
ggplot( core2, aes(x = totnetassetend )) +
geom_density( alpha = 0.5) +
xlim( quantile(core2$totnetassetend, c(0.02,0.98), na.rm=T ) ) +
xlab( "Net Assets" ) +
theme( axis.title.y=element_blank(),
axis.text.y=element_blank(),
axis.ticks.y=element_blank() )
core2$totnetassetend[ core2$totnetassetend < 1 ] <- NA
if( nrow(core2) > 10000 )
{
core3 <- sample_n( core2, 10000 )
} else
{
core3 <- core2
}
jplot( log10(core3$totnetassetend), core3$asset_rev_ratio,
xlab="Nonprofit Size (logged Net Assets)",
ylab=variable.label,
xaxt="n", xlim=c(3,10) )
axis( side=1,
at=c(3,4,5,6,7,8,9,10),
labels=c("1k","10k","100k","1m","10m","100m","1b","10b") )
core2$totnetassetend[ core2$totnetassetend < 1 ] <- NA
core2$asset.q <- create_quantiles( var=core2$totnetassetend, n.groups=5 )
core2 %>%
filter( ! is.na(asset.q) ) %>%
ggplot( aes(asset_rev_ratio) ) +
geom_density( alpha = 0.5 ) +
labs( title="Nonprofit Size (logged net assets, if assets > 0)" ) +
xlab( variable.label ) +
ylab( "" ) +
facet_wrap( ~ asset.q, nrow=3 ) +
theme_minimal( base_size = 22 ) +
theme( axis.title.y=element_blank(),
axis.text.y=element_blank(),
axis.ticks.y=element_blank() )
Total Assets for Comparison
core2$totassetsend[ core2$totassetsend < 1 ] <- NA
core2$tot.asset.q <- create_quantiles( var=core2$totassetsend, n.groups=5 )
if( nrow(core2) > 10000 )
{
core3 <- sample_n( core2, 10000 )
} else
{
core3 <- core2
}
jplot( log10(core3$totassetsend), core3$asset_rev_ratio,
xlab="Nonprofit Size (logged Total Assets)",
ylab=variable.label,
xaxt="n", xlim=c(3,10) )
axis( side=1,
at=c(3,4,5,6,7,8,9,10),
labels=c("1k","10k","100k","1m","10m","100m","1b","10b") )
ggplot( core2, aes(x = totassetsend )) +
geom_density( alpha = 0.5) +
xlim( quantile(core2$totassetsend, c(0.02,0.98), na.rm=T ) ) +
xlab( "Net Assets" ) +
theme( axis.title.y=element_blank(),
axis.text.y=element_blank(),
axis.ticks.y=element_blank() )
core2 %>%
filter( ! is.na(tot.asset.q) ) %>%
ggplot( aes(asset_rev_ratio) ) +
geom_density( alpha = 0.5 ) +
xlab( "Nonprofit Size (logged total assets, if assets > 0)" ) +
ylab( variable.label ) +
facet_wrap( ~ tot.asset.q, nrow=3 ) +
theme_minimal( base_size = 22 ) +
theme( axis.title.y=element_blank(),
axis.text.y=element_blank(),
axis.ticks.y=element_blank() )
ggplot( core2, aes(x = AGE )) +
geom_density( alpha = 0.5 ) 
core2$AGE[ core2$AGE < 1 ] <- NA
if( nrow(core2) > 10000 )
{
core3 <- sample_n( core2, 10000 )
} else
{
core3 <- core2
}
jplot( core3$AGE, core3$asset_rev_ratio,
xlab="Nonprofit Age",
ylab=variable.label ) 
core2 %>%
filter( ! is.na(age.q) ) %>%
ggplot( aes(asset_rev_ratio) ) +
geom_density( alpha = 0.5 ) +
labs( title="Nonprofit Age" ) +
xlab( variable.label ) +
ylab( "" ) +
facet_wrap( ~ age.q, nrow=3 ) +
theme_minimal( base_size = 22 ) +
theme( axis.title.y=element_blank(),
axis.text.y=element_blank(),
axis.ticks.y=element_blank() )
ggplot( core2, aes(x = lndbldgsequipend )) +
geom_density( alpha = 0.5 ) 
core2$lndbldgsequipend[ core2$lndbldgsequipend < 1 ] <- NA
if( nrow(core2) > 10000 )
{
core3 <- sample_n( core2, 10000 )
} else
{
core3 <- core2
jplot( log10(core3$lndbldgsequipend), core3$asset_rev_ratio,
xlab="Land and Building Value (logged)",
ylab=variable.label,
xaxt="n", xlim=c(3,10) )
axis( side=1,
at=c(3,4,5,6,7,8,9,10),
labels=c("1k","10k","100k","1m","10m","100m","1b","10b") )
}
core2 %>%
filter( ! is.na(land.q) ) %>%
ggplot( aes(asset_rev_ratio) ) +
geom_density( alpha = 0.5 ) +
labs( title="Land and Building Value" ) +
xlab( variable.label ) +
ylab( "" ) +
facet_wrap( ~ land.q, nrow=3 ) +
theme_minimal( base_size = 22 ) +
theme( axis.title.y=element_blank(),
axis.text.y=element_blank(),
axis.ticks.y=element_blank() )
core.asset_rev_ratio <- select( core, ein, tax_pd, asset_rev_ratio )
saveRDS( core.asset_rev_ratio, "03-data-ratios/m-15-asset-revenue-ratio.rds" )
write.csv( core.asset_rev_ratio, "03-data-ratios/m-15-asset-revenue-ratio.csv" )